On the Products ofk-Fibonacci Numbers andk-Lucas Numbers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sums of products of generalized Fibonacci and Lucas numbers

In this paper, we establish several formulae for sums and alternating sums of products of generalized Fibonacci and Lucas numbers. In particular, we recover and extend all results of Z. Čerin [2, 2005] and Z. Čerin and G. M. Gianella [3, 2006], more easily.

متن کامل

The Imperfect Fibonacci and Lucas Numbers

A perfect number is any positive integer that is equal to the sum of its proper divisors. Several years ago, F. Luca showed that the Fibonacci and Lucas numbers contain no perfect numbers. In this paper, we alter the argument given by Luca for the nonexistence of both odd perfect Fibonacci and Lucas numbers, by making use of an 1888 result of C. Servais. We also provide a brief historical accou...

متن کامل

The sum and product of Fibonacci numbers and Lucas numbers, Pell numbers and Pell-Lucas numbers representation by matrix method

Denote by {Fn} and {Ln} the Fibonacci numbers and Lucas numbers, respectively. Let Fn = Fn × Ln and Ln = Fn + Ln. Denote by {Pn} and {Qn} the Pell numbers and Pell-Lucas numbers, respectively. Let Pn = Pn × Qn and Qn = Pn + Qn. In this paper, we give some determinants and permanent representations of Pn, Qn, Fn and Ln. Also, complex factorization formulas for those numbers are presented. Key–Wo...

متن کامل

Trigonometric Expressions for Fibonacci and Lucas Numbers

The amount of literature bears witness to the ubiquity of the Fibonacci numbers and the Lucas numbers. Not only these numbers are popular in expository literature because of their beautiful properties, but also the fact that they ‘occur in nature’ adds to their fascination. Our purpose is to use a certain polynomial identity to express these numbers in terms of trigonometric functions. It is in...

متن کامل

On the properties of k-Fibonacci and k-Lucas numbers

In this paper, some properties of k−Fibonacci and k−Lucas numbers are derived and proved by using matrices S = k 2 1 2 k 2+4 2 k 2 and M = 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2014

ISSN: 0161-1712,1687-0425

DOI: 10.1155/2014/505798